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The article considers a system analogous to that described In [l] for the 
self-contained determlnatlon of the coordinates of the center of gravity of 
a moving object and Its orientation both with respect to the horizon plane 
and in azimuth. 

For arbitrary motion of an object near the surface of the earth, we derive 
and analyze th'e equations for the ideal operation of such a system (the. equa- 
tions of relative equilibrium) and the error equations, i.e. the equations 
of small oscillations about a position of relative equilibrium. The basic 
Instrument errors of components of the system are taken into account. 

The equations considered here are fairly general. The equations and re- 
sults obtained In [1] to [7] follow from these as special cases. 

1. We Introduce a right-handed orthogonal coordinate system O'<*&,, ; 
Its origin 0' 1s situated at the center of the earth, the C,-axis lsdlrect- 

ed along the earth-rotation angular velocity vector U and the <+ and Q, 

axes are In the plane of the equator, so directed that the trlhedron c+q+C+ 

retains a constant orientation with respect to the fixed stars. Ifwe neglect 

the orbital motion of the earth, this system of coordinates may be considered 

inertial. 

We Introduce the coordinate system O'<,,Q,C~ bound to the earth ; the 

CO -axis of this system colncldes*with the C+-axis and &-axis Is directed 

along the Intersection of the equator with the plane of the Greenwich me- 

ridian. We shall assume that the coordinate systems <+q+C+ and &,?bCO 

coincide at the zero time. 

The position of an arbitrary point in the <,,~,cc coordinate system will 

be diflned by spherical coordinates: the latitude cp , the longitude X , 

and the distance R of the point from the center of the earth 0'. Thenme 

unit vector p In the direction from O', the center of the earth, to the 

arbitrary point 0 will be 
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P(‘PIh)=~,cosrpcOSh+q,coscpsinh+F,sinrp (W 
Here &,, q, and Co are unit vectors of the corresponding axes. 

Furthermore, we Introduce the coordinate system O'gnc , bound to two 

directions P~((PL>&) and P ( s qa,Aa) which remain fixed in the &no&, co- 

ordinate system, In such a way that 

e = pl, q = P~;lP,‘y~, @L& toss, = p1.pa (1.2) 

The position of the center of gravity 0 of an object moving In the <qc 

coordinate system will be defined by spherical coordinates: the angle S 

measured In the <n plane from the t-axis toward the n-axis, the angle z 

measured from the {n plane toward the c-axis, and the distance R of the 

point 0 from 0', the center of the earth. 

We shall attach the Darboux trlhedron Ox,y,zl to the point 0 . Its 

al-axis Is directed along the line 0'0 away from the center of the earth 

and yl-axis lies in the plane containing the point 0 and the axis 0'5 . 
The arrangement of the 5nC and 

xlylal coordinate systems rela- 

tive to each other Is determined 
I E I ‘1 If 

by the table of direction cosines xl -sinS toss 0 
(1.3) 

shown at the right. Yl - sinzcosS -sinzsinS cosz 

Zl cosz toss coszsin S sinz 

If the mc and L%L co- 

ordinate systems coincide, then 

the angles I and S become the geocentric latitude cp and longitude A, 

and the x~~,z~ trlhedron becomes orlentedwlth respect to the cardinal points. 

Xl 1 Yl \ Zl 
We shall also attach to the center of 

gravity of the object the trlhedron OX~~~Z, 
$0 

I 

cos3 sine 0 
(1.4) obtained from the x,y,zl trlhedron by rotating 

Yo -sins COS.9 0 through an angle c about the a,-axis, de- 

20 0 0 1 fined by the table of direction cosines shown 

at the left . If v,, Q,and V,. are the 

projections of the absolute velocity of the motion of the point 0 on the 

x,,, ~0 and lo axes, o%,, my,, and oz, are the projections of the absolute 

angular velocity of the x~~~z, trlhedron on Its axes, then 

V X# = %/,? Vlh 
= -Roxo, vz, = R' (1.5) 

Here and hereafter, a dot will be used to denote differentiation with 

respect to time. 

Using (1.2), (1.3) and (1.4), we can express&,, Ov,,and Oz, by zS,S',cS 

and by u the angular velocity of the rotation of the earth 
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ox, = (- ifu(- n31 sin S + n3% cos S)) cos e + (1.6) 
+ (S’ cos~z + u (- n,, sin z cos S - n32 sin z sin S + n33 cos 2)) sin 8 

(%I. = -(- i + u (- n,, sin S + n3, co9 S)) sin e + 
+ (S’ cos z j- u (- n,, sin z cos S - n,, sin z sin S -I- n,,, cos z)) cos 8 

Co 29 - - s’ sin z + u (n,, cos 2 cos S + n33 cos 2 sin S + n,, sin 2) + 13’ 

Here nm , nag and ns3 are the cosines of the angles between the CO-axis 

and the <,q,c axes ; they are equal [ 81 to 
(1.7) 

n31 = sin ‘pl, n32 = 
sin pa - sin ‘pl cos SO cos ‘pa co.3 ‘pl sin (Al- X2) 

sin SO , n 33 = sin SO 

Solving Equations (1.7) for I*, S' and E* and Integrating, we have 
i 

z=- [ox, cos e - oy, sin e - u (- n3, sin S + n,, cos S)l dt + 2’ 
0 

t 

s= 

s E&r 
~x,sine+o,,cose-u(-n3,sinzcosS- (W 

0 

- n32 sin z sin S + n33 co9 z)] at + S” 
t 

e = C[ wz, - tg 2 (ox, sin e + oy, cos 13) - 
0” -- ,O:z (n31 cos S + ns2 sin S)l dt + 13’ 

If Keg oy,, and 61z,are known as functions of time, we can set up a com- 
puting scheme simulating Equations (1.8) and thus find a, S and e . 

2. Let the Inertial attitude control (Fig. 1) consist of a platform (the 

trlhedron 0~~s) bound to the object by a three-gimbal suspension (not shown 

In Fig. 1). Three gyroscopes &,G. and G3 with kinetic moments HI,H. and 

,q3 are supported In three-gimbal suspensions on the platform. By applying 

the moments M,, M, and M, to the gyroscopes, we can make the platform rotate 
with the angular velocltles [l] 

or = (M, I HI) = m,, og = (M, 1 Ha) = 6, OL (iv, / H3) = Mz (2.1) 

Three accelerometers [1] c,,c, and c, are rlgldly connected to the plat- 

form ; their axes of sensitivity are directed along the ry2 axes. If we 
make the xy~ and hvozo trihedra coincide at time zero, then from the 

accelerometer readings we can set up the moments M,, M, and MI so that for 

an arbitrary motion of the object, Equations 

ox = oq, oy = oy,, 02 3 o*, (2.2) 

will always be satisfied and the trlhedra will coincide throughout the time 

that the object moves. 

We shall assume that the sensitive masses of the accelerometers are point 

masses concentrated at the point 0 Then, having established the necessary 

relationship between the coefficient of elasticity of the suspension of the 

sensitive mass and its magnitude, we can regard the accelerometer readings 

as being equal to 
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ar,= or+JL a, = Qg i- Ft,, az = Q* + Fz (2‘3) 
where 8, ,Q, and 0, are the projections of the inertial force (referred to 

a unit mass) of the translatory motion 

of the xgz coordinates origin, on the 

axes of sensitivity of the accelerometers 

and F,, F, and F, tire the projections 

of the earth's gravitational force acting 

on a unit mass situated at 0. The system 

of coordinates 015*nlkcS is considered 

inertial, consequently 

If we neglect the non-central gravltational field of the earth, we have 

F, = F, = 0, F,, = -k/R2= -g(R) (2.5) 
From (2.31, (2.4) m; (2.5) we find 

1 
%*=R 

[s 
(- ax0 - w,,R' - Rw+,)dt+ R"o,P] (2J-9 

lo[S(CQ* +RW&O& -CO,R') dt +Iz'o:] 0*=x 

R'= f( 
s 

- 02, -I- R (0," ; 0;) -_g (M dt -I- WI", .=\K,... 

0 i 
We shall now set up m,,and RX,,, simulating equations (2.9)) i.e. we shall 

define 772x,, and K$, by Equations 
t 

The quantities A and R' required for setting up the right-hand sides of 

(2%), are obtained from the last two equations of (2.6) if we replace 01%~ 

and Oy, in those equations by mxrr and my, j we then obtain 

t f 
R’= (- s % + R (mll,” + myg2) - g (R)) dt + (R’)“, R = ~R*dt -j- R” (2.8) 

a 0 

It is readily seen that MZ, may be set up as an arbitrary function oftlme 

mz, = Mz, 0) (23 

Evidently, the moments set up In this max’mer will fdentically satisfy 
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Equations (2.2). 

We now make use of (1.8) to find 0, S and E 
t 

z=- 
s 

tm, cos e - m, sin E - u (- n31 sin S + rzs2 cos S) I di! + 2' 

0 

S=\ & Im sins+m,,cose--(-nn,,sinzcosS- 
0 (2.10) 

- ns2 sin z sin S + ns3 co5 z)l dt + So 
t 

0 - unz(mx,sine+ m,cose) - --& (nsl, cos s + n,, sin s)] dt + e* 

%zations (2.1), (2.31, (2.41, (2.5), (2.7), (2.8f, (2.9) and (2.10) form 
a closed system of equations for ideal (unperturbed) operation of an Inertial 

attitude control. 

In (2.5) the gravitational field of the earth was assumed to be central. 
If we assume that the earth's gravitational force acting on the sensitive 
mass of an accelerometer lies in a plane containing the axis of rotation of 
the earth, then for the projectionsF%, FV,t and FZs on the axes of a tri- 
hedron oriented with respect to the cardinal points (with the 01/s-axis 
pointing North), we have 

Fr, = 0, Fyt = F,*(R, Q), Fzz= FJR, T) (2.11) 

Notlng that 

co9 0 cos (WJ = c@s (9&J, cos ol&) cc&J (Y&J = cos (Y&o) (2.12) 

we can use (1.2), (1.3) and (1.4) to find 

Fr, =(F,fcoscp)[(--nS1sinS~n,cosS)cose~ 

+(-?aarSinzCOsS- n,SinzSinS+ n,cosz)SinEl 

F,= (F,/coscp) I- (- n~sinS&-nsacOsS)sine+ 

-I- (- n,~sinzcosS- n,SinzsinS+ n,cOaz)Cf)Ssl (2.13) 

F, = Fz, 

Consequently, in order to take into account the non-central nature of the 
earth's gravitational field, we must use Equation (2.13) instead of (2.5). 
Moreover, since FVzand Fzz are functions of rp , we must add d relationship 
between g, and a,S 

sina,=n,l~~2C~S+n~C~zSinS+~~sinz 

As was noted earlier, m,*(t) may be chosen arbitrarily. 

If we assume 

u m = mvW-z 
-- 

=o COSZ 
(na cos S f ~8, sin S), e” = 0 

(2.14) 

(2.15) 

then the identity E zz 0 will hold, and the ~,y,*~ trlhedron will coincide 
with the xlylzl trihedron the orientation of which is determined by the 
coordinates of the a,S grid ; If the CnC and con,,{ coordinate systems 
coincide, the orientation is determined by the coordina?es of the cp,X grid. 

Another condition that must be imposed on rn,@ to simplify the equations 
of ideal operation is 

mzp = 0 (2.16) 
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for ideal operation In the coordinates _-,S or cp,h for the 
(2.16) may be obtained from the fundamental Equations (2.1), 

to (2.10) and (2.13). 

We note that if R Is a known function of the object coordinates a,$ 

or cp,A and time, then the a,@ eccelerometer may be omitted. This can 

happen, for example, in the case of motion on the surface of the ocean, when 

we may assume that 
R = a (1 - l/?e2 sin2cp) (2.17) 

where a is the semi-major axls and e Is the eccentricity of Clairaut's 

elllpsold. It may also happen in the case of flight near the surface of the 

earth, when, In addition to (2.17), the altitude above the surface of the 

earth Is measured by means of a radio altimeter. In this case Equations 

(2.8) drop out of the set of equations for Ideal operation, and we add a 

relation defining R as a function of the coordinates and the altimeter 

readings. 

The above equations for the Ideal operation of an Inertial attitude con- 
trol completely determine Its nature (within the framework of precession 
theory) only if all the components of the system are free of error, the ln- 
ltlal position and Initial angular velocity of the xy.z trlhedron coincide 
exactly with the position and velocity of the x,y,,z, trihedron, and the 
Initial values of the coordinates and their rates of variation, Introduced 
Into the computer of the system, are In exact agreement with the coordinates 
and velocity of the object at the Instant the attitude control begins to 
operate. 

If some of these conditions are not satisfied, the motion of the attitude 
control will naturally de different from the described by the equations for 
ideal operation, the xyz trlhedron will not coincide with the X~Y~,PJ trl- 
hedron, and the coordinates obtained for the object will contain errors. 

3. We shall now derive the error equations. In the derivation we shall 

take Into account only the Instrument errors of the system : the accelcro- 

meter errors Au,, A%*, Au,,, the moments Am,.+, Amyor Amz,, producing 
free drift In the gyroscopes, and the error 6m,, of the formulation of mz,. 

It can be shown that the Instrument errors of any part of the system may be 

reduced to a set of equivalent fundamental errors. 

Let the perturbed position of the trlhedron Oxyz with respect to the 

OX,,~,P, trlhedron be defined by the small angles CI, $ and y , So that the 
direction cosines defining the position of these trlhedra with rspect to 

each other form the table shown here at the right. 
lx!ylz 

Then the differences between the projections of x0 

the absolute angular velocity of the Oxys trl- Yo r 
III 

1 -; P (3.1) 

20 - 
hedron In perturbed and unperturbed motion are 

p a-: 

The variations of the accelerometer readings are equal, reSpectlveIY 
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b, = au*7 - @,,B + Aa,,, 8%. = - a,-r + ~,g + A%, 

W, = G$ - q,,a 4 Aa, 
From (2.1) we have 

60, = 6m,* + Amror 8oy,=%,,+ Am,, &B=8mz,+ Am, 

Flnally, varying Equations (2.7) and (2.8), we find 

(3.3) 

(3.4) 

(8a,, + 8Rm,,myo t Rm,,8m,, t Rm~,~mz,-- 
0 

- R’Bm, - 8R’rn~~dt _t-R”bo”, + 8R”cax,” - SRm,,l 

8%,=4 (- 6a,, - R’bm,, - 8R’m, - 8Rmxom, - Rm,*8m, - (3*5) 
0 

- Rm,,8m,,) dt + R”by,O + ~R’o~,~ - 6Rm,I 

dR.=\ i-8az,+8R(mx~+~~)-!- 

0 

Vm, = 8m, 0)) 

8R’ dt + 6R” 

-I- 2R (m,8m, + ~,8~*) - 6g (R) 1 dt.+ 8 (R’;” 

> 

In the variation of Equations (2.7), the variations of the correction8 

for the non-central nature of earth's gravitational field were neglected as 

being small. The variations are isochronous, the time is not varied, and the 

timer aboard the platform is thus assumed to be ideal. The quantities 

8ouoo, 80x,‘, 8R” and 8(&')" denoteathe Input errors In the initial data. 

From (3.2) to (3.5), noting that 

&.?(R) = -2g8RlR (3.6) 
bearing in mind the equations of ideal operation, perforting the change of 

variables 
x=Ra, Y = RB (3.7) 

and Introducing the notation 

*0 8=glR (3.8) 
we obtain the following equations for determining x, y, bR and y : 

2” + (coo2 - o**” - COJ z - (ok&/, + o&) y - 
- 20&t/’ + (cc?*- - OY*O~) 8R $2@,8R’ = 

= A%,+ R Am,,'+ZR'Am,- Rw, Am,- Ro,Am, 

y” + (002 - ov.” - 0,,2) y - (ux,q/, - G,‘) x + 20,~ + 
+ (O@f, + oy,‘) 8R + 20,~’ = (3.9) 

= - ha,+ R Am,,'+2R'Am,+Rw,Am,+ Ro, Am, 



7’ = - G$ + up + fim, 5 Am, 

The initial conditions for Equations (3.9) and (3.10) will be 

2?=R" o 0 , go = ROB”, 8R”, 8(R’)“, 7” 

(z’)’ = (R’)” a0 + R” (SO,,~ + Amx.’ - 0~~~7 + w,‘~“) 

(y’)” = (R’)” p” + R” (80,” + AmIlD + ~~.‘7* - ~.+,*a”) 

We proceed to formulate the equations for the errors in the coordinates 

z, S and the azimuth angle g . Varylng Equatlons (2.10), we obtain 

62' = - 8m,, cos e + 6my, sin 8 + (mx, sin e + mu0 cos e) BE - (3.12) 
- u (nal co9 S + naz sin S) 6S 

8s’ cos z = 8m, sin e + 6m,, cos E + 

+( m, cos e - my, sin e) 86 + un 2 (m,, sin e + my, cos e) 82 + 
+ u sin z (- n,, sin S -I- n,, cos S) 6s + u ?eec 2 (nsl cos S + ns2 sin SMz 

88’ cos .z = am,, cos z - sin 2 (6m, sin e + dm, cos 8) - 
- sin 2 (m,, co9 8 - m, sin 8) Be + u (nS, sin S - na2 co9 S) 6S - 
-[SW 2 (mx, sine+ my, CoSe)+ @~Z(?2s,COSS + a32 sins)] 62 

By introducing the new variables ai, 81 and y1 

a1 = -8zcose+&Scoszsine, ~1=6zsinE+8Sc0szcose 

7,=6e+BSsinz (3.13) 
we can transform Equations (3.12) to the form 

% = 6mX,CP,m,-rlm,, k' = am, ----lmz,+ 7,m, 

Tl ’ = Sm., - Plmx. + almIte (3.14) 

It l.s readily seen that the variables al, $I and vt represent the angu- 

lar errors In the determination of the coordinates and the azimuth. 

From (3.4) and (3.14), again introducing new variables 

a2 = a, - a, Pz=Bl--B~ 72 = Tl-- 7 (3.15) 

we obtain a second group of equations for the error of the Inertial attitude 

control 

aa' -W& + wUorB = - Am,, @a' - ox*r2 + 04u2 = - Amy, (3.16) 

72’ - %% $_ %$z = - Amz. 
The Initial conditions for the differential equations (3.16) are found 

from (3.13) and (3.15). 

If there is no accelerometer along the +,-axis and information on the 
magnitude of R is 
the first group (3.9 e: 

iven in addition, then the third equation drops out of 
of error equations. If R. Is given either as a 
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constant or as a function of time, then L? and 6R)’ which a pear in the 
first two equations of (3.9), will be known (possibly random P functions of 
time. In the case where J? and R' are determined by the attitude control 
as functions of the other two coordinates of the object, we must consider 
also the equations obtained by varying these functions. Thus, if the motion 
takes place on the surface of the ocean, we have 

6R = 6R((p) + AR (3.17) 

where bR(cp) Is obtained by varying (2.17) and (2.14), and AR is thelnstru- 
ment error. 

The error equations (3.9), (3.10), (3.15) and (3.16) are fairly general. 
They constitute the error equations of an arbitrary Inertial system for the 
selfcontained determination of the coordinates of an object by means of 
accelerometers and gyroscopes. They are essentially obtained directly from 
Newton's laws. The concrete system considered here was used only as a frame- 
work for deriving them, and no parameters of this system appear on the left- 
hand sides of (3.9), (3.10), (3.15) and (3.16). 

It will be shown below that the special cases of these equations will 
Include the equations for the small oscillations of a physical pendulum with 
an extended length equal to the radius of the earth [2] and [9], the equa- 
tions of a two-g roscope pendulum [4] and [6], and the equations of a gyro- 
horizon compass 9 north seeking gyroscope) studled In [3,5,6 and 73. - 

4. We shall prove that Equations (3.9), (3.10), (3.15) and (3.16) make 

possible a group of rotations by an arbitrary angle 6 (t) about the Oz,- 

axls. This property follows from the fact that mZO (t) Is arbitrary, and 

consequently so Is the angle c characterizing the orientation of the trl- 

hedron In azimuth. This also may be proved directly. In equations (3.9), 

(3.10) and (3.16) we adopt the new variables Y', y', 6R’, ‘f,(dR’)‘, CQ’, 6/*‘, 
PI’, P2’,rl’, rz'by the nonsingular linear transformation 

5 = x’cos6 -y'sin6, y = x’sin6+ y’cos6 (4.1) 
ul=a 1’ cos 6 - PI’ sin 6, uz= u2’ cos 6 - &’ sinfb 

f31-== al’sin 6 + 01’ cos 6, f12 = az’ sin+ + pz cos 6 

r=f, Tl = r1’r r2 = r2’1 6R = 6R’, 6R’ = (6R’)’ 

where 6 (t) i s an arbitrary function of time. The transformation Inverse 

to (4.1) is obvious. The transformation (4.1) converts Equations (3.9), 

(3.10) and (3.16) into equations In new variables with the newly derived 

equations retaining the same form as the original equations. The coefflcl- 

ents and the right-hand sides are transformed as follows: 

I 
@x. = ox, cos 6 + ou, sin 6, my,’ = - or, sin 6 + oy, cos 6, ~0~~' = wZ, + 6' 

R’ =R, (R’)’ = R’, (c&)2)’ = oo2 

Aax,’ = Aa, cos I? + Au!,~ sin 6, Aaye’ = - Aa,, sin 6 + ball0 cos t? 

Au,’ = AazO, Am.,,’ = Am,,, dmLor = drnze (4.2) 

Amx,’ = AmXu cos 6 + Am,, sin 6, Amy,’ = - AmX, sin 6 + Am,,, cos 6 

To prove this, we substitute (4.1) and (4.2) Into , (3.10), (3.15) 
and ( .16). 

3 
Substitution Into the third equation of , Into Equation 

(3.10 and Into the last equations of (3.15) and (3.1 Immediately shows 
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the validity of the foregoing statement for these equations. After substi- 
tuting into the first and second equations of (3.9), we must multiply them 
by COS* and Sin6 , respectively, and add the results. we then obtain the 
first equation of the new system. 
spectlvely, 

If we multiply by-s& 6 and cos6 
and then add, we obtain the second equation. In a slmllai ~ZI- 

ner we can obtain the new equations for aI', el' 
two equations of (3.15) and (3.16). 

and a& fli from the first 

From (4.1) and (4.2) we see that the Inverse transformation Is obtained 

from the direct transformation If we replace 6 by - 6; finally, we can 

readily establish that the two successive transformations 6, and 6, are 

equivalent to one transformation such that 6, = 6, + 6,. 

The above property of Equations (3.9), (3.10), (3.15) and (3.16) enables 

us, In the analysis of this system, to select the accompanying trlhedron 

OX,,~,~.,, In different ways for dlfferent laws of object motion. In a number 

of cases It Is convenient to use a trlhedron one of whose axes, for example 

x,,, lies In the plane .contalnlng the object's absolute velocity vector and 

the center of the earth. The angle e(t) I s obviously found from the con- 

dition ox.' = O,,whlch yields 

tan ~=ox./oy, (4.3) 

!Che equations for this case are obtained from (3.9), (3.10), (3.15) and 

(3.16) for wx, = 0. 

In most cases the problem of a navigational system Includes the determi- 

nation of object coordinates with respect to the earth; for this reason, 

the suitable choice for the angle 6 will be one for which one of the axes 

1les in the plane containing the relative velocity vector and the center of 

the earth. 

It Is also found useful to employ an azimuthally free trlhedron In which 

6 Is found from the condition oh' = 0; hence 

Appropriate equations are obtained f",om the system (3.9), (3.10), (3.15) 

and (3.16) for Oz, = 0. Since in this case the equations are independent 

of C+,, while Wq and WV, are limited by the upper velocity llmlt of the 

object, It Is sometimes easier to analyze equations In this form. 

If 6 Is so chosen that the x,&,2, trlhedron becomes oriented with 

respect to the cardinal points, It Is convenient to analyze equations (3.9), 

(3.10), (3.15) and (3.16), for an object which Is motionless with respect to 

the earth or which moves along a parallel. 

If there IS no accelerometer along the zO-axis, then for da,, = Aa,. = 

= Am, = Am, = AmZo = 0, the first two equations of (3.9) become the 

equations for the small oscillations of a special physical pendulum [2] and 

c91. The left-hand sides of these equations are of the form [2] 
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5” + (coo2 - w5* - Q) z - (O&, +. ozJ y - 2&y’ = 0 

y” -F toe2 - oy, - 63*,2} y - (050110 - 0 243 5 + 2t.o,i = 0 (W 
The equations for the small oscillations of a two-gyroscope pendulum [43, 

the Anschiits-Geckeler gyro-horizon compass [3] and the system for the self- 

contained determination of object coordinates [l] reduce to Equations (4.5). 

For example, the equations for small oscillations of a gyro-horizon com- 
pass before simpliflcat~on [3] have the form 

- ml (va)' -;t\ lF$ = --02.38 sin cr, p’+ (vfR)a =oy (4.Q 

T -+- (2RB sin Q)/ mUi = -CO& -(2B8sina)'+ l(F-mv8/R)~=omla 

Here $ and y are the angles by whtih the platform of the gyro-horizon 
compass deviates from the edges of the Darboux trihedron Ox,,x,,,ao, whose 
&,-axis Is directed along the vector of the absolute velocity v of motion 
of the object and 

Eliminating o 
obtain 

m, I, j and B = Aa are constants, 

v = ovOR, O=W 20’ F = mg, (4.7) 

and 2&% sinu from (4.6) and making use of (4.7), we 

q,‘r + 2 ~q)T’~ 7” + o,ay = (O&Z -J; ok*) r - qIl - 2tD$’ (4.8) 

Since, in the case under consideration, in equations (4.5) we should set 
e&.,,=oand the g,y of Equation (4.8) correspond to the a,g of Equation 
(4;6), It follows that these equations are identical. The Identity of the 
equations of a two-gyroscope pendulum [4] and the system considered In [1] 
is proved in a similar manner. 

In [l], [33 and [4] a solution is given for the simplified equations (4.6), 
using a complex-valued formulation. The simpllflcatlon Introduced consists 
of the fact that In (4.8) u is considered equal to zero. This Is equl- 
valent to the simplification m&Z a$, -Gin Equations (4.5). Writing Equa- 
tions (4.5) with respect to an asimuth&lly free trihedron, we obtain in this 
case 

(a')" + O&X' = 0, (fi')"+ o,Bfi' = 0 (4.9) 

The solution of Equations (4.9) is obvious. 

It 
tlons 
tions 

be noted that [l] and [2] pointed out to the equivalence of Aqua- 
and (4.5), and I: 23, in addition, showed that the form of FQua- 
is retained under'the transformation (4.1) and (4.2), and noted 

that neglecting o in (4.8) reduces the equations to the harmonic equations 
ApparentlyFthese comments escaped attention, and therefore in [5] 
considerable effort was wasted In proving that in the case Oy ~0 

Equations (4.8) can be reduced to equations with constant coefflclentsP 

The stability of the system (4.62 for constant UI and v and small 
values of the variables Is Investigated In [7]. The Llapunov stability con- 
dition, derived In these studies 

00" - C&v*" - 0 zp>o (4.10) 

may also be obtained by Investigating the characteristic equations of the 
system (4.8) by Hurwitz's method if an arbitrarily small total dissipation 
is introduced into this system. 

The three equations (3.9) form a closed system and may.be considered 

independent of the others. Together with (3.7), they determine the angular 

osclllatlons of the attitude control platform with respect to the o%Y,& 
trihedron In the angles a and $ , and also the quantity bR . If from 
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these we find w, y and b,? , then we can use (3.7) to determine by quadra- 

tures the angle y of the azimuthal oscillations of the platform from Equa- 

tion (3.10). Equations (3.16) also form a closed system. If we find from 

these the angles az,pz and va, and make use of the solutions x and I/ 

of Equations (3.9) and also (3.7) and (3.15), we can obtain solutions for 

Q, @I and y1 which determine the errors in the azimuth angle and the co- 

ordinates computed by the attitude control system. 

In the general case (3.9), (3.10) and (3.16) are equations with variable 

coefficients. Their right-hand sides may be either expliclte or random 

functions of time. For this reason, the study of these equations involves 

considerable difficulty. 

Only in a few special cases can equations (3.9), (3.10) and (3.16) be 

reduced to equations with constant coefficients. These cases include : a 

base which is motionless In the coordinate system O'<+q&+ (in this case 

may be any arbitrary function of time); motion at constant velocity at a 

fixed distance from the center of the earth in a plane passing through that 

center; and motion at constant velocity along a parallel. 

Plane motion at a constant distance from the center of the earth, for a 

case in which the object velocity varies in a specified manner, reduces the 

system (3.9) to the Mathieu-HA11 equation. 

For the general case of object motion the system (3.16) coincides with 

the equations that determine the direction cosines n,, of the axes of the 

trlhedron Ox,y,~, in the coordinate system O'5++nlxC+ on the basis of speci- 

fied values of w%,, O!,,, Oz,. This system has a first integral and reduces to 

the Riccati equation [lo]. However, if the object motion is specified In 

such a way that the nlJ are known functions of time, the system (3.16) may 

be integrated to the end. 

The analysis of Equations (3.9), (3.10) and (3.16) may be facilitated by 
the fact that these are equations in variations, so that no great accuracy 
Is required in their solution. For this reason, various approximate methods 
of calculation may be used. Different methods may be found suitable for 
different classes of object motion. Examples of such classes of motion may 
be found in the motion of sea-going ships, the motion of aircraft in the 
atmosphere and Keplerian or nearly Keplerian motion. 

The first of these classes of motion Is characterized by the fact that 
the velocity u1 with respect to the earth Is low In comparison with the 
circumferential velocity of motion of points of the Equator, 

and that the change In distance from the center of the earth, caused by the 
fact that the earth is not a perfect sphere, is small. In this class of 
motion the amount of time spent In continuous operation may be large. FOX- 

this case the initial solutions to be refined by approximation methods may 
be taken to be the solutions for the case of a base motionless with respect 
to the earth. 

For the second class of motion the velocity is considerably greater than 
the circumferential velocity of rotation of the earth, but much smaller than 
the circular orbital velocity, i.e. 



luer~t.ial systems nf oetermlnatlon of coorUtnat.es 

the amount of change In R is- small and the time required 
operation is small in comparison with the first case. For 
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(4.12) 

for continuous 
this class the 
base motionless . . lnitlal solution may be taken to be that for the case of a 

in absolute space or else for the case of plane motion in tne coordinate 
system O'S+r),E+. 

Finally, for Keplerian and nearly Keplerian motion when o and 0 are 
comparable to UJ,, the initial solutions used may be those fo?the caa of 
plane motion, and for Keplerian motion with a small orbital eccentricity we 
may use the case of plane motion at a constant distance from the center of 
the earth (a circular orbit). 

In some cases it Is useful to specify Equations (3.91, (3.10), (3.15) and 

(3.16) as projections on the axes of the coordinate system O'S*tluC* 

(aE.')"+!$ I(rl*2 + 5*2 - 2C*? Q*'- 3E,rl*h*' - 3E*5*G*'J = (4.13) 
= - Aat* - 2qN'Amc* + Zt,'Am,* - q* (Am:*)' + 5* (Am,*)' 

(h*')*'+ g I(C*" + 6*2 - 2q*") h*I--- 3ll*C*K*' - 3rl*E*R*'l = 

= - Aa,* - Zc,‘Amc* + Z&'Amy* - 5* (Ami)' + E, (Am<*)’ 

VT*)“+ j$ uE*a + rl*3 - X*“) @*‘- 35*5,@*’ - 39*5*h*‘l.= 

= - Aae* - ZE,'Am,* + Zq*'Amc* - &, (Am,*)' + q, (Ame*)' 

In order to find the errors in the coordinates, Equations 

6%* = SE,' 3 &.", &j* = 67*' + 8q*", s%, = S&.' + SC*" (4.14) 

must be supplemented by the relations (4.15) 

6E*” = q*r* - 5*B*9 dq*m = - E*r* + c*a*, k*” = E*B* - ri,a* 

where a,, &, and y+ are Sound from Equations 

a* * = Am<,, _ fi,: = Am,*, ye’ = Amr, (4.16) 

From (4.16) and (3.16) it follows that (3.16) Is integrable when the nr, 

are given. 

The structure of Equations (4.13) to (4.16) is similar to Equations (3.9), 

(3.1(J), (3.15) and (3.16). They may be either obtained by projecting Equa- 

tions (3.9), (3.10), (3.15) and (3.16) on the axes of O'S+n,&+ or derived 

directly as the equations for the errors in an inertial system in which the 

accelerations are measured along the direction O$+, on,, and OC+r which 

have a fixed orientation In space. Equations (4.13), (4.14), (4.15) and 

(4.16) retain their form when a change Is made to an arbitrary trlhedron 

p," nWOcl whose orientation with respect to crn&+ remains fixed. 

The author is grateSu1 to ALU, Ishlinskii and V.N. Koshliakov Sor their 

comments on the present work. 
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